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In this paper we extend our grasp of statistical theory, duality

theory, and computational convenience to the general linear inequality
situation in K2L (or minimum discrimination information) estimation by
exhibiting it as the limit of a simple one parameter sequence of equality

problems. Only the finite discrete distribution case is treated here.
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INTRODUCTION

Frequently in hypothesis testing or estimation of an "inferential"
distribution (in Akaike's terminology) by the Khin¥in-Kullback-Leibler (or
Minimum Discrimination Information) method one has information about the
possible candidate distributions in the form of linear inequalities on
the components of the distribution in addition to equality (moment) con-
straints. In MOFS 1978, Charnes, Cooper, and Seiford [1] developed a convex
programming duality theory for the KQL method with linear inequality
constraints. It is especially incisive and convenient for constraints in
equality (or moment) form which, further, have connections with established
statistical theory as well as the analytic and computational facility of
an unconstrained extremal problem in simple smooth functions.

In this paper we extend our grasp of statistical theory, duality
theory, and computational convenience to the general linear inequality
situation by exhibiting it as the limit of a simple one parameter sequence
of equality problems. We treat only the finite discrete distribution case
here, reserving the general distribution case to a forthcoming paper which
also simplifies the duality theory of the "equality" case for general

distributions as developed by Ben-Tal and Charmes in [2].

INEQUALITY AND APPROXIMATING EQUALITY FORMS
The dual programs for the inequality form as presented in Charnes-

Cooper-Seiford [1] are
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To obtain the dual programs for our approximating (weighted) equality
form, we employ the procedure in [1]. Thus, consider

(1) K(x,y,8,Y) 2 21 (c
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where ci >0 for all i and € >0,

Minimizing with respect to Xy and yi glives:
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To decouple, as in [1], we obtain
(4)  8Tx + yly = b'T51 4 p2T,2

and
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when we choose

(6) x = Az 4 4252 , ¥ = 52

Thereby, we have the dual problems
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with z unconstrained
(Note that the ¢ 1€I2, may be chosen arbitrarily.)

The duality theory of (III) and (IV) is precisely that of the

equailty case in [1], as may be seen by making the change of variables to
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Our present form is, however, more convenient for our arguments.

We now define
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(7.2) g(z,e)

We will then have
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Theorem 1:
For some » - 0, iﬁf f(z) exists if and only if inf g(z.c) exists.
2.0 4
Further,
lim  inf g(z,e) = inf f(3z)
er0  z 22<(Q
Proof:
3
Consider ——%— . It may be written as
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where k= 5,2 and (ck)” = (c1k1, cees cmkm).
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For z%_ > 0 we see that by choosing € small enough we can make

g(z,e) an increasing function in that direction. Thus, in seeking a minimum
we need only consider 22 < 0. For notational simplicity in the following

and "inf" with respect to z shall always also entail z2<: 0.

2

For 2°< 0 and all € > O we have °

(9) £(z) < g(z,e) < f(2) + 512;2 ey ;
ie . :

If inf f(2z) exists, then, by (9), inf(z) < g(z,e) so that inf g(z,c) exists :
for all ¢ > 0. Further, inf f(2) < inf g(z,c). On the other hand, if

inf g(z,e) exists, then, by (9), inf g(z,e) < f(2) + eji:z ¢, so that inf f(z)
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Hence

(10.1) 1inf f(z) < inf g(z,e) < inf f(z) + 522 c;
iel

and

(10.2) 1im inf g(z,e) = inf f(z)
e+0

When f(z) has a minimum at z*, again from (9) we can conclude

(11) f(z*) = 1lim g(z%*,¢)
e Q.E.D.

So much for the minimization side of the duality. For the KQL

side we have

Theorem 2:

The maximum in problem (I) and, as € » 0, in problem (III) is the

same.
Proof:
Yy
For 0 < Yi < eci, we have —ci< \ In eci < 0, whereas for
Yy
A > ecy, Yy In gi— > 0. Therefore,

Vi
(12) -€ Z Yy 1n(eci ) <€ Z c, for all y, >0.

1e12 ie12
Thus,

(13)  v(8,v,e) < v(8) + ez c; < f(z) + 822 c,
1e1? iel

From (13) we conclude




(1%) sup v(8,v,e) < sup v(8) + EZ ¢, < inf f£(z) + ez: ¢y
iel? 112

But by the theory of {1],
sup v(8,y,e) = max v(68,y,e) = inf g(z,e) > inf £(z) by (10.1). Hence

(15) inf f(z) < max v(§,y,e) < sup v(8) + ¢ 22 ¢, < inf f(z) +¢ Z c

i :
iel 1512
Thus letting € - 0, we have
5
(16) inf £(z) < lim max v(8,y,e) < sup v(8) < inf f(2)
>0
and
(17) lim max v(8,v,e) = sup v(8) = inf f(3z)
>0
Q.E.D. ']
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